Telegram Group & Telegram Channel
Как сделать систему, которая умеет обучаться чему угодно?

Расскажу обещанные ранее мысли по поводу того, как мета-обучать алгоритм, способный на всё. У меня в голове соединились следующие идеи:

1) Во-первых, система, уже умеющая решать высокоразмерные сложные задачи, сама должна быть сложной и содержащей много информации. Так или иначе, вы не сможете сделать маленькую модель, играющую в го, или управляющую телом. У вас слишком высокоразмерные входы и выходы. При этом вы хотите уметь решать всё, а не конкретную задачу, так что модели будут огромными.

2) Как происходит обучение системы на конкретной задаче? Перед началом обучения на тестовой задаче в системе уже зашито определённое количество информации. В случае AdA у нас обученный трансформер с огромным количество параметров, порядка сотен миллионов. Вы применяете его на новой задаче, он собирает какое-то дополнительное количество информации о задаче, необходимой для её решения, и решает её за несколько попыток.

3) Далее чистая спекуляция. Для того, чтобы решить какую-то задачу, нам нужно иметь в итоговой модели X информации. Доля той информации, которую модель извлекла в процессе обучения на новой задаче, от X, и есть характеристика обучаемости.
В случае AdA в модели зашиты сотни миллионов параметров, и она заточена под решение специфичного семейства задач. Для того, чтобы начать решать новую задачу, ей нужно всего лишь извлечь несколько бит информации о скрытой динамике конкретной задачи, чтобы её решать.
Человек устроен в корне не так! ДНК человека, кодирующая всю систему, содержит всего несколько миллиардов бит информации! По этому коду строится система, которая обладает на ~пять порядков большим объёмом параметров, и обучается уже в процессе.

То есть архитектура интеллекта человека кодируется небольшим количеством параметров. В процессе эволюции происходит оптимизация очень большой системы в очень сжатом пространстве параметров.

Давайте побрейнштормим!

Напишите в комментариях как можно больше различных сжатых параметризаций устройств обучающейся системы с большим количеством параметров.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/79
Create:
Last Update:

Как сделать систему, которая умеет обучаться чему угодно?

Расскажу обещанные ранее мысли по поводу того, как мета-обучать алгоритм, способный на всё. У меня в голове соединились следующие идеи:

1) Во-первых, система, уже умеющая решать высокоразмерные сложные задачи, сама должна быть сложной и содержащей много информации. Так или иначе, вы не сможете сделать маленькую модель, играющую в го, или управляющую телом. У вас слишком высокоразмерные входы и выходы. При этом вы хотите уметь решать всё, а не конкретную задачу, так что модели будут огромными.

2) Как происходит обучение системы на конкретной задаче? Перед началом обучения на тестовой задаче в системе уже зашито определённое количество информации. В случае AdA у нас обученный трансформер с огромным количество параметров, порядка сотен миллионов. Вы применяете его на новой задаче, он собирает какое-то дополнительное количество информации о задаче, необходимой для её решения, и решает её за несколько попыток.

3) Далее чистая спекуляция. Для того, чтобы решить какую-то задачу, нам нужно иметь в итоговой модели X информации. Доля той информации, которую модель извлекла в процессе обучения на новой задаче, от X, и есть характеристика обучаемости.
В случае AdA в модели зашиты сотни миллионов параметров, и она заточена под решение специфичного семейства задач. Для того, чтобы начать решать новую задачу, ей нужно всего лишь извлечь несколько бит информации о скрытой динамике конкретной задачи, чтобы её решать.
Человек устроен в корне не так! ДНК человека, кодирующая всю систему, содержит всего несколько миллиардов бит информации! По этому коду строится система, которая обладает на ~пять порядков большим объёмом параметров, и обучается уже в процессе.

То есть архитектура интеллекта человека кодируется небольшим количеством параметров. В процессе эволюции происходит оптимизация очень большой системы в очень сжатом пространстве параметров.

Давайте побрейнштормим!

Напишите в комментариях как можно больше различных сжатых параметризаций устройств обучающейся системы с большим количеством параметров.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/79

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Knowledge Accumulator from hk


Telegram Knowledge Accumulator
FROM USA